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Abstract: Harmonic potential fields have been known very useful to solve path planning problems globally. This 

study presents the use of harmonic potential fields (HPFs) for robot navigation in a known indoor environment. The 

harmonic potential fields were obtained using an iteration procedure based on block methods and subsequently 

used in the path planning simulation. The simulation was designed in a structured environment which contains 

various forms of obstacles such as narrow corridors, corners and small rooms, where several different start and 

goal positions were tested. For performance comparison purposes, the standard point Gauss-Seidel (GS) and 

Successive Overrelaxation (SOR) methods were also considered. The simulation results showed that the HPFs were 

capable of providing smooth path for robot navigation in a structured environment. It was also shown that the block 

iterative methods were more efficient compared to the standard point iterative methods in computing the HPFs. 

Keywords: Path planning, harmonic potential fields, block iterative method, robot navigation. 

1. Introduction 

The idea of utilizing HPFs in robotics was first initiated by Khatib [1] for controlling robotic manipulators 

and mobile robots using a goal with an attractive potential and obstacles with repulsive potentials. A main 

problem with this potential field approach, however, was that the robot being attracted to local minima instead of 

the goal. A solution to this problem is to utilize potential fields that are solutions to the Laplace's equation [2-4]. 

These Laplace's potentials have the advantage over simple potential field based approach, as they have no local 

minima. Moreover, they offer a complete path planning algorithm, and paths derived from them are generally 

smooth. In the past, an exact method based on the HPFs were applied in many area of researches including ship 

navigation [5], trajectory control [6], space robot path planning [7], navigation of snake-like robot [8], UAV 

motion planning [9], marine vessel path planning [10], 3D motion planning for UAV [11,12], space exploration 

[13], etc. In robot navigation problem, the HPFs were successfully applied in various types of environments [14-

20]. As an exact method, the approach based on HPFs posses the advantage of complete algorithm property to 

guarantee that the solutions can be found if they exist, or otherwise the algorithm can detect when no solution 

exists. In other words, there are no approximations or sampling errors that becomes the main problem in 

heuristics methods. The HPFs are computed in a global manner over the entire region, thus they do no exhibit 

spurious local minima. 

In this study, we focus on the problem of path planning for a robot operating in a structured indoor 

environment. The path planning algorithm utilizes the surface gradient of the computed HPFs to generate path 
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from arbitrary start position to the specified goal position. The HPFs are computed using block iteration 

procedures that are superior to the standard point iterative methods. 

2. Physical Analogy 

Assuming that a real robot vehicle can be reduced to a point moving in a known environment, path planning 

problem of the robot can be formulated as a steady-state heat transfer problem. In the heat transfer analogy, the 

goal is treated as a sink pulling heat in. The obstacles are indicated by zero (or very low) thermal conductivity. 

According to the tasks and environment, the sources are either assigned to the robots or to discrete nodes in the 

free-space. As the result of a heat conduction process, a temperature distribution develops and the heat flux lines 

that are flowing to the sink fill the workspace. Such a field can be seen as a communication medium among the 

goal, robots and robots. The path can be easily found by following the heat flux. This study follows the above 

analogy, where the robot is represented by a point in a static known structured environment. The path planning 

problem is then posed as an obstacle avoidance problem for the point robot from the start point to the goal point. 

The environment has either square or rectangular outer boundaries, inner walls and varying shapes of obstacles. 

The environment is discretized into grid form and function values associated with each node are computed. The 

highest function value is assigned to all points at the boundaries, whereas the goal point is assigned the lowest. 

This setting amounts to Dirichlet boundary conditions. 

The potential field is computed in a global manner over the entire region, and the harmonic solutions to 

Laplace's equation are used to find the path lines for a robot to move from the start point to the goal point. 

Obstacles are considered as current sources and the goal is considered to be the sink, with the lowest assigned 

potential value. This amounts to using Dirichlet boundary conditions. Then, following the current lines, a 

succession of points with lower potential values leading to the point with least potential (goal) is found out. It is 

observed by Connolly et al. [2] that this process guarantees a path to the goal without encountering local minima 

and successfully avoiding any obstacle. 

3. Harmonic Functions 

A harmonic function on a domain      is a function which satisfies Laplace's equation 

     
   

    
   

         (1) 

In the case of robot path construction, the boundary of    consists of the outer boundary of the workspace 

and the boundaries of inner walls and all the obstacles as well as the goal point, in a configuration space 

representation. The spontaneous creation of a false local minimum inside the region is avoided if Laplace's 

equation is imposed as a constraint on the functions used, as the harmonic functions satisfy the min-max 

principle. Laplace's equation can be solved in one of two ways, numerically or analytically. Numeric solutions 

rely on setting boundary conditions on the potentials at the outer boundaries, inner walls and obstacle boundaries. 

Typically the potentials would be relatively high at the start position and lowest at the goal position, so that the 

virtual gradient of the potentials point descendingly toward the goal position. In the path planning literature, 

Gauss-Seidel [2] and Successive Overrelaxation (SOR) [19] had been used for computing the solutions of 

Laplace's equation (1). It was shown that SOR performed considerably faster than Gauss-Seidel. Alternatively, 

Daily and Bevly [14] use analytical solution for arbitrarily shaped obstacles. More recently, Saudi and Sulaiman 

employed block iteration procedure for behaviour-based robot in relatively very simple environment [16, 20]. 

Block iterative methods had been extensively studied by Evans [21, 22], Akhir et al. [23], Muthuvalu et al. [24], 

and Kew and Ali [25]. They pointed out that block iterative methods are superior to the traditional point iterative 

methods. In this study, we apply the combination of block iterative methods with SOR for computing the HPFs 

in a static indoor structured environment. Unlike simple environment in our previous studies [16, 20], in 

structured environment the path planner has to consider the inner and outer boundary walls and avoid various 

shapes of obstacles, as well as difficult corners, narrow paths and small rooms. For performance comparison, 

both point Gauss-Seidel and SOR iterative methods were also considered. 
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4. Point Iterative Method 

The application of equation (1) to model the harmonic potential values in the path planning problem often 

results in large linear system with sparse coefficient matrix. Therefore, numerical solution of (1) using iterative 

method is often used to efficiently solve such linear system which is oftenly large and sparse. The standard five-

point finite difference formula to approximate equation (1) is given as 

                                         (2) 

Here, we assume that a rectangular grid in the (x, y) plane with grid spacing h in both directions with xi=ih, 

yj=jh is used and ϕi,j=ϕ(xi,yj) with i,j=0,1,2,...,n. The corresponding Gauss-Seidel [26] and SOR [27] iterative 

schemes for the standard five-point difference formula can be written as  
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Applying these finite difference approximations to equation (1) will result in systems of algebraic equations 

that can be stated as 

         (5) 

where A and b are known and u is unknown. For simplicity, let matrix A be decomposed into 

            (6) 

where D is a block diagonal matrix, L is a lower triangular matrix and U is an upper triangular matrix. Thus, the 

corresponding Gauss-Seidel and SOR iterative schemes in matrix form can be written as 

                              (7) 

                                           (8) 

Note that, if ω, equation (8) simplifies to the standard Gauss-Seidel scheme (7). The iteration process of 

equations (7) and (8) continues until the convergence criterion is satisfied, i.e.   || ϕ
(k+1)

 - ϕ
(k)

 || < ε. The 

convergence error tolerance, ε must be set to a very small value to avoid the occurrence of saddle points in the 

resulting Laplace's potential. These saddle points could prevent the path tracing process from reaching the goal 

point. The weighted parameter, ω is the range 1 ≤ ω < 2. The optimal value of ω can be obtained by conducting 

several runs of test until it gives the least number of iterations, k. During computation, only non-occupied nodes 

are considered. All other occupied nodes are ignored, since their values are held fixed. 

5. Block Iterative Method 

5.1. Block of Two Points Method 

By applying equation (2) to a block of two node points as depicted in Figure 1, we obtain 

      
 

 
(                           )     

        
 

 
(                             )     (9) 

In linear form (5), these equations can be rewritten as  

 [
   
   

] [
    

      
]  [

                           

                             
]     (10) 

By determining the inverse matrix of the coefficient matrix in equation (10), the general scheme of two 

point-block iterative method can be rewritten as (Evans [21, 22])  

 [
    

      
]  

 

  
[
  
  

] [
                    

                        
]     (11) 
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Fig. 1: (a) The GREEN and RED cells denote the start and goal points, respectively. GREY cells are boundary and 

obstacles. The cells are computed in group of either (b) two or (c) four node points. 

Based on equation (11), the iterative scheme for the two point-block iterative method can be defined as 
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where 

             
     

       
   

       
     

               
     

         
   

       
   

                  

It can be clearly observed in equation (12) that the calculations of ϕ(k+1) and ϕ(k+1) are completely 

independent. Thus, block iterative method is very suitable for parallel implementation. Figure 1(a) illustrates the 

configuration space of the environment, where the occupied and non-occupied cells are drawn in GREY and 

WHITE colours, respectively (the start (GREEN) and goal (RED) points are considered as non-occupied cells). 

For the two point-block iterative method, each group consists of two node points, as shown in Figure 1(b). All 

ungroup nodes next to the boundary or obstacle cells are computed using direct method [21]. Furthermore, by 

adding a weighted parameter, ω, equation (12) can be rewritten as 

       
     

 
 

  
                  

   
         

     
 

 

  
                    

   
     (13) 

Equation (13) represents the iterative scheme for Two Point-Block Successive Overrelaxation (2-BLSOR) 

method.  

5.2. Block of Four Points Method 

Consider a group of four points (4 × 4) as depicted in Figure 1 (c). By applying the standard five-point finite 

difference approximation (2) to this group of points, the block iterative method based on four points can be 

expressed as 
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]     (14) 

where                                                                                                        

Figure 2 depicts the computational molecules of the four points. Now, the explicit solution of equation (14) 

can be defined as 
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]     (15) 

Based on equation (15), we obtain the iterative scheme of four point-block iterative method that can be expressed as 
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where  
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By adding a weighted parameter, ω, equation (16) can be rewritten as 

     
     

 
 

  
                  

   
          

     
 

 

  
                    

   
    

       
     

 
 

  
                    

   
            

     
 

 

  
                    

   
     (17) 

Equation (17) represents the Four Point-Block SOR (4-BLSOR) iterative method. The algorithm to 

implement 4-BLSOR method is described below: 
1. t1 := startclock, k := 0 

2. repeat 
3.   for all groups of two node points do 

4.   Use equation (17) to compute     
     

,       
     

,       
     

 and         
     

 

5.    for all ungroup node points do 

6.     Compute all nodes using equation (4) 

7.  k := k + 1 

8. until || ϕ
(k+1) 

- ϕ
(k)  

|| < ε 

9. t2 := stopclock, telapsed := t2 – t1 

6. Experiment and Simulation Results 

The path planning algorithm begins by loading the map of the structured environment. The position of goal 

point is then indicated on the map. After that, the initial potential values of the environment are stored in a 2D 

matrix. All node points occupied by inner walls, outer boundaries and obstacles are assigned with relatively high 

potential values. Meanwhile, the goal point is assigned with the lowest potential value. The potential values of 

the occupied node points and goal points are fixed and do not change during the iteration process. Initial values 

that are equal to the potential values of the occupied nodes are assigned to all other free spaces. Since high 

precision is required, the convergence criterion is set to a very small error tolerance, ε = 10
-16

. The harmonic 

potentials of the environment are then computed using the considered iterative methods, i.e. GS, SOR, 2-BLSOR 

and 4-BLSOR. When the convergence criterion is satisfied, the iteration process is terminated. By using the 

computed harmonic potential fields, the required path can be traced using the standard Gradient Descent Search 

(GDS) procedure. From initial position, the GDS picks the lowest point from its four neighbourhood points. This 

process continues until the goal point with the lowest potential value is found out. A stack is used to store points 

along the path line. The simulation was conducted by using a static known indoor structured environment that 

consists of inner wall, outer boundaries and various shapes of obstacles. Narrow paths, difficult corners and 

small rooms were also present. Two examples, i.e. Room 1 and Room 2 are considered covering an area of 

approximately 330 × 270 and 290 × 290 units, respectively. To examine the robustness of the path planning 

algorithm, several different start and goal points were tested. Figures 2 and 3 depict the corresponding generated 

paths for Room 1 and Room 2.  
 

 

 

 

 

Fig. 2: The generated paths for Room 1 covering an area of 330 × 270. 

 

 

 

 

 

Fig. 3: The generated paths for Room 2 covering an area of 290 × 290. 
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The solid green box red circle denotes the start and goal point, respectively. The algorithm was capable of 

generating paths even with the occurrence of difficult regions. The path generation process was also very fast, 

since it only involved simple evaluation of finding the next lower potential value. The number of iterations and 

CPU time of the considered methods are shown in Table 1. The value of ω was set to 1.85 that gave the optimum 

performance in terms of number of iterations and execution time. Against the standard GS method, the SOR 

drastically reduced the iterations approximately by 90%. The block methods method gave the least number of 

iterations, where the iterations for 2-BLSOR and 4-BLSOR were approximately 25% and 50% less than the 

point SOR iterative method. In terms of CPU time, SOR method was 10 times faster than the standard GS 

method. The block methods gave the best performance, where the respective CPU time for 2-BLSOR and 4-

BLSOR were 20% less and 55% than the point SOR iterative method. 

TABLE I: ITERATIONS (k) AND CPU TIME (t) OF THE CONSIDERED METHODS 

 Methods Number of iteration (k) CPU time (t) in seconds 

Room 1 

GS 50490 173.59 

SOR 4609 16.39 

2-BLSOR 3519 13.06 

4-BLSOR 2361 7.48 

Room 2 

GS 19194 59.40 

SOR 1696 5.69 

2-BLSOR 1287 4.54 

4-BLSOR 854 2.44 

7. Conclusion and Future Work 

Harmonic potential fields provide smooth gradient surface that are very useful for navigation of a robot. This 

study has proven its effectiveness to assist navigation in unstructured environments containing obstacles of 

various shapes. Simulations conducted show that the proposed block iterative methods provide better 

performance than the point iterative methods. Furthermore, the block iterative method is particularly suitable for 

parallel implementation. In the future, the study will consider dynamic and unstructured environments. The 

application of block iteration procedure on a higher dimensional space will be considered. The implementation 

of iterative methods on the real physical robot and integration in the cloud environment will also be considered. 
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