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Abstract: In this paper, we study a comparison of transform methods to solve porous medium equations 

with other initial conditions. The nonlinear term can be handled by adomian decomposition method. The 

results tell us that the good method is more efficient and easier to handle porous medium equations with 

other initial conditions. 
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1.  Introduction 

In recent years, the partial differential equations have been used in many of the physical phenomena and 

various fields of engineering and science. The porous medium equations are the nonlinear heat equation to 

describe various physical phenomena, the form given by [1] 

     ( , ) ( ( , )) ( , )m

t xu x t u x t u x t
x





    (1)     

Where m is a rational number. There are number of physical applications where this model appears in a 

natural way to describe fluid flow, heat transfer or diffusion. 

In 2013 Bhadane and Pradhan [2] proposed Elzaki transform homotopy perturbation method to solve porous 

medium equation when 1m  with initial condition as ( ,0)u x x  in Example 3.2 and they get the solution is 
( , )u x t x t   

In this paper, we use Laplace transform, Elzaki transform and Sumudu transform to solve porous medium 

equation when 1m   and the nonlinear term in the equations are handled by Adomian decomposition method 

with other initial conditions. We compare between transform methods to found that method are good for solving 

this equation with other initial condition. 

2.  Basic Definitions 
 

2.1. Adomain’s Polynomials [6] 

Definition Let E  and F  be two Banach spaces,  a scalar field, define 
: ,N E F u Nu 

 a nonlinear 

operator, differentiable up to the 
thn order at ( )n  where   is a function of the scalar variable  , taking its 

values in E , and defined by  

0

( )
n

i

i

i

u 


   

We define the Adomian’s polynomials by the formula 

                              ISBN 978-81-933894-1-6   

5th International Conference on Future Computational Technologies (ICFCT'2017) 

Kyoto (Japan) April 18-19, 2017  

https://doi.org/10.15242/DIRPUB.U0417001 86



 
0 0

1
( ) ,

!

n n
i

n in
i

d
A N u N u n

n d



  

 
  

 
  

2.2. Laplace Transform [3] 

0

[ ( )] ( ) ( )stL f t e f t dt F s



   

In general ( )F s will exist for s  where  is some constant. L is called the Laplace transform operator. 

2.3. Elzaki Transform [4] 

Consider functions in the set A defined by 

 /

1 2( ) | , , 0 | ( ) , ( 1) [0, )jt k jA f t M k k f t Me t         

The Elzaki transform is defined by 

2

1 2

0

[ ( )] ( ) ( ), ( , )tE f t u f ut e dt T u u k k



    

2.4. Sumudu Transform [5] 

Over the set of functions 

 /

1 2( ) | , , 0 | ( ) , ( 1) [0, )jt jA f t M f t Me t


          

The Sumudu transform is defined by 

1 2

0

( ) [ ( )] ( ) , ( , )tG u S f t f ut e dt u  


     

3.  Applications 

In this section show the effectiveness of the Laplace transform, Elzaki transform and Sumudu transform with 

Adomian polynomials. 

Example 3.1 From equation (1) when 1m  we get  

     ( , ) ( , ) ( , )t xu x t u x t u x t
x





     (2) 

with initial condition as ( ,0)u x x  

Applying the Laplace transform 

we have 

    
2

( , ) ( , ) ( , ) ( , )t xx xu x t u x t u x t u x t       (3) 

we apply the Laplace transform on both sides of (3), we have 

     
2

( , ) ( , ) ( , ) ( , )t xx xL u x t L u x t u x t u x t  
 

     (4) 

This can be written as 

     
2

( , ) ( ,0) ( , ) ( , ) ( , )xx xsL u x t u x L u x t u x t u x t   
 

    (5) 

According to the initial condition, we can obtain 

     
21

( , ) ( , ) ( , ) ( , )xx x

x
L u x t L u x t u x t u x t

s s
   
 

    (6) 

Taking inverse Laplace transform on both sides of (6) we get 
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   
21 1

( , ) ( , ) ( , ) ( , )xx xu x t x L L u x t u x t u x t
s

        
    (7) 

Now we apply Adomian decomposition method 

     
0

( , ) ( , )n

n

u x t u x t




      (8) 

 

 

And the nonlinear term can be decomposed as 

     
0

( ( , )) ( )n

n

N u x t A u




      (9) 

According to (7)-(9) is equivalent to 

1

0 0

1
( , ) ( )n n

n n

u x t x L L A u
s

 


 

  
    

  
   

where ( )nA u are Adomian polynomials. The first few components of Adomian polynomials are given by 

 
2

0 0 0 0( ) xx xA u u u u   

 1 1 0 0 1 0 1( ) 2xx xx x xA u u u u u u u    

 

We get 

0( , )u x t x  

 1

1 0

1
( , ) ( )u x t L L A u

s

  
  

 
 

 

22
1 0 0

0 2

1 u u
L L u

s x x


    

    
      

 

 t  

 1

2 1

1
( , ) ( )u x t L L A u

s

  
  

 
 

  1

1 0 0 1 0 1

1
2 0xx xx x xL L u u u u u u

s

  
      

 
 

3( , ) 0u x t   

4( , ) 0u x t   

  

( , ) 0nu x t   

Therefore, the solution of (2) is 

0

( , ) ( , )n

n

u x t u x t




  

 x t    

Applying the Elzaki transform 

we apply the Elzaki transform on both sides of (3), we have 

   
2

( , ) ( , ) ( , ) ( , )t xx xE u x t E u x t u x t u x t  
 
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This can be written as 

 
 

2( , )
( ( ,0)) ( , ) ( , ) ( , )xx x

E u x t
u u x E u x t u x t u x t

u
   
 

 

According to the initial condition, we can obtain 

     
22( , ) ( , ) ( , ) ( , )xx xE u x t xu uE u x t u x t u x t   

 
    (10) 

Taking inverse Elzaki transform on both sides of (10) we get 

   
21( , ) ( , ) ( , ) ( , )xx xu x t x E uE u x t u x t u x t     

  
    (11) 

 

 

Now we apply Adomian decomposition method 

    
0

( , ) ( , )n

n

u x t u x t




       (12) 

And the nonlinear term can be decomposed as 

    
0

( ( , )) ( )n

n

N u x t A u




       (13) 

According to (11)-(13) is equivalent to 

1

0 0

( , ) ( )n n

n n

u x t x E uE A u
 



 

  
    

  
   

where ( )nA u are Adomian polynomials.  

We get 

0( , )u x t x  

 1

1 0( , ) ( )u x t E uE A u      

  
21

0 0 0xx xE uE u u u    
  

 

 t  

 1

2 1( , ) ( )u x t E uE A u      

  1

1 0 0 1 0 12 0xx xx x xE uE u u u u u u          

3( , ) 0u x t   

4( , ) 0u x t   

  

( , ) 0nu x t   

Therefore, the solution of (2) is 

0

( , ) ( , )n

n

u x t u x t




  

 x t   

Applying the Sumudu transform 

we apply the Sumudu transform on both sides of (3), we have 

   
2

( , ) ( , ) ( , ) ( , )t xx xS u x t S u x t u x t u x t  
 

 

This can be written as 
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 
 

2( , ) ( ,0)
( , ) ( , ) ( , )xx x

S u x t u x
S u x t u x t u x t

u u
   
 

 

According to the initial condition, we can obtain 

     
2

( , ) ( , ) ( , ) ( , )xx xS u x t x uS u x t u x t u x t   
 

    (14) 

Taking inverse Sumudu transform on both sides of (14) we get 

   
21( , ) ( , ) ( , ) ( , )xx xu x t x S uS u x t u x t u x t     

  
    (15) 

Now we apply Adomian decomposition method 

     
0

( , ) ( , )n

n

u x t u x t




      (16) 

 

 

 

And the nonlinear term can be decomposed as 

     
0

( ( , )) ( )n

n

N u x t A u




      (17) 

According to (15)-(17) is equivalent to 

1

0 0

( , ) ( )n n

n n

u x t x S uS A u
 



 

  
    

  
   

where ( )nA u are Adomian polynomials.  

We get 

0( , )u x t x  

 1

1 0( , ) ( )u x t S uS A u      

  
21

0 0 0xx xS uS u u u    
  

 

 t  

 1

2 1( , ) ( )u x t S uS A u      

  1

1 0 0 1 0 12 0xx xx x xS uS u u u u u u          

3( , ) 0u x t   

4( , ) 0u x t   

  

( , ) 0nu x t   

Therefore, the solution of (2) is 

0

( , ) ( , )n

n

u x t u x t




  

 x t   

Remark consider initial conditions ( ,0)u x x t  or t  

the solution is  1) Laplace : ( , ) 2u x t x t  or ( , )u x t t  

      2) Elzaki : ( , ) 2u x t x t  or ( , )u x t t  
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    3) Sumudu : ( , ) 2u x t x t  or ( , )u x t t  , respectively. 

Example 3.2 From equation (2) with initial condition as ( ,0) xu x e  

In the same way with example 3.1 ,  

by the Laplace transform we get the solution is 
2 2 3( , ) 2 9x x xu x t e te t e    ,  

the Elzaki transform we get the solution is 
2 2 3( , ) 2 9x x xu x t e te t e     

and the Sumudu transform we get the solution is 
2 2 3( , ) 2 9x x xu x t e te t e     

Remark consider initial conditions ( ,0) x tu x e  or 
te  

the solution is  1) Laplace : 
2 2 2 3 3 3 3( , ) 6 9 3x t x x t x x t x tu x t e e e e e e          or ( , ) tu x t e  

      2) Elzaki : 
2 2 2 3 3 3 3( , ) 6 9 3x t x x t x x t x tu x t e e e e e e          or ( , ) tu x t e  

    3) Sumudu : 
2 2 2 3 3 3 3( , ) 6 9 3x t x x t x x t x tu x t e e e e e e          or ( , ) tu x t e   

, respectively. 

4. Conclusion 

 The main goal of this paper is to show a comparison of transform methods to solve porous medium equations 

with other initial conditions. We found that all method can solve that and to get the same solution. When we 

consider the initial condition is ( ,0) x tu x e   ,we found that some term of equation is hard to solve by the 

general Elzaki and Sumudu . This term must be decomposed and that is easy to solve by Elzaki and Sumudu 

transform. 
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