Numerical Prediction of Energy Efficiency of Standing Buildings in Hot and Dry Cites

A. Balabel¹ and M. Alwetaishi²

¹Department of Mechanical Engineering, Faculty of Engineering, Taif University, Taif, Saudi Arabia ²Department of Civil Engineering, Faculty of Engineering, Taif University, Taif, Saudi Arabia

Abstract: According to the vision of Saudi Arabia 2030, more attention has been given for the application of renewable energy in addition to the optimization of energy consumption in standing residential and industrial buildings. It is well known that, residential buildings account for more than 60% of the total electricity consumption in Saudi Arabia due to cooling and heating loads. Most of research carried out aiming to improve building which is designed from the first stage. However, the dominant amount of energy is consumed by the exciting buildings which are built without guide for energy efficiency. The present paper provides different suggestions for standing buildings in hot and dry climate cities in order to be much efficient buildings through minimising their energy consumptions. A typical residential building's model in the city of Riyadh is simulated numerically to reduce the total energy efficiency in buildings. In general, the results obtained showed that the size of glazing system is the most important parameter which can be modified in the exciting buildings to become much efficient energy buildings.

Keywords: Energy saving techniques, Numerical prediction, residential buildings, thermal analyses, hot and dry climate cities.

1. Introduction

One of the important goals of Saudi Arabia's vision 2030 is how to improve the energy saving techniques in all life sectors, especially, in residential buildings. Therefore, an increased attention has been recently turned to increase the building energy performance in Saudi Arabia in order to improve the global energy saving strategy and to achieve the required indoor thermal comfort [1]. The local climate boundary conditions in different area of Saudi Arabia can play an important role on the obtained thermal comfort and consequently, the appropriate design of the residential building in such areas [2]. It is common knowledge that the microclimate conditions depend on light regime, air and soil temperatures, humidity and solar radiation in specified area or region.

According to the rapidly increasing of population and a high level of economic growth, Saudi Arabia is experiencing a huge infrastructure expansion, especially with respect to residential buildings. Due to the hot and humid Saudi climate, approximately 70% of electricity is consumed by air conditioning systems alone for interior cooling throughout the year. As a result, energy demand for residential buildings has become a very high level in Saudi Arabia, especially in the hot-humid climatic regions. This high energy consumption sheds light on the extent of the problem in Saudi Arabia. Consequently, this indicates the urgent need to adopt a strategy to reduce the excessive use of energy in residential buildings [3].

An effective strategy can be based on passive architectural design principles relating to the thermal insulation materials being used for the building, as this offers the potential for a cost-effective solution for

energy reduction and major savings in electricity needed for cooling and heating purposes in residential buildings [4].

In general, retrofitting refers to the addition of new technology or features to older systems. Renovation, retrofit and refurbishment of the existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit of buildings involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. However, retrofitting the existing building can oftentimes be more cost-effective than building a new facility.

Since buildings consume a significant amount of energy, particularly for heating and cooling, and because existing buildings comprise the largest segment of the built environment, it is important to initiate energy conservation retrofits to reduce energy consumption and the cost of heating, cooling, and lighting buildings.

Conserving energy in existing buildings is not the only reason for retrofitting, but also a high-performance building should be obtained by applying different new strategies during the integrated, whole-building design process. In some cases, a single design strategy can meet multiple design objectives in obtaining less costly building, and contributing to a better, healthier, more comfortable environment for people in which they live and work. That can improve occupant health and productivity through decreasing moisture penetration and reducing mold which will results in improving indoor environmental quality.

The retrofit process should consider upgrading for accessibility, safety and security at the same time, and special attentions must be given when dealing with historic buildings.

In general, considering major renovations and retrofits for existing buildings to include sustainability initiatives will reduce environmental impacts and operation costs, and can increase building durability, adaptability, and resiliency.

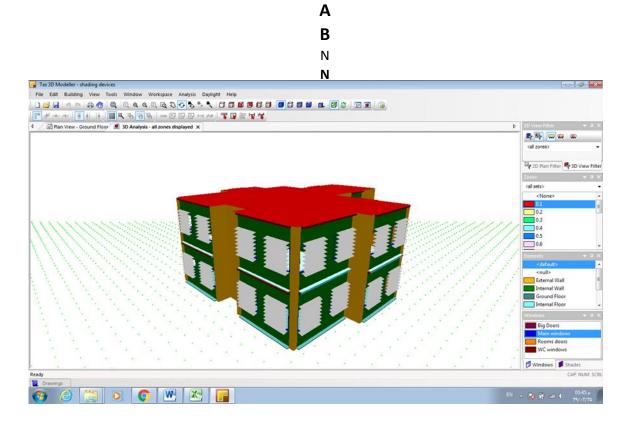
Before taking the decision of the retrofit of existing buildings for energy and sustainability improvements, it is important to determine if the investment is worthwhile in perspective with the current building conditions. List of different potential performance indicators have been identified through the literature review [5, 6].

Once one has determined that other building conditions should be implemented to upgrading for sustainability and improved energy performance, an action plan and a sequence of activities should be applied in order to determine the best options for energy and sustainability improvements.

Different sustainability and energy-efficiency strategies can be adopted and realized in the existing buildings for energy and sustainability improvements. For example:

- 1. Minimize the consumption of energy and water systems.
- 2. Apply daylight, HVAC and lighting sensors in appropriate locations according to the occupancy patterns.
- 3. Incorporate energy efficient lighting into the interior as well as exterior of the existing buildings.
- 4. Reduce heating and cooling loads by means of natural ventilation techniques.
- 5. Design a renewable energy system that can replace the traditional energy system.
- 6. Replace existing windows with high-performance windows with Nano-coating glass.
- 7. Develop more responsive maintenance system form enhancing building performance.
- 8. Employ a green roof system for existing buildings if possible.
- 9. Reduce the windows area, or Glazing to Wall ratio.
- 10. Consider solar shading devices for external windows and doors, including those that can generate electricity by photovoltaic (PV).

11. Improve or apply the thermal insulation for the external as well as the internal walls of the existing buildings.


Building energy simulation (BES) models have been recently improved, taking into account local climatic conditions to conducting a proper assessment of building energy consumption in urban areas. Indeed, many investigations show that the urban microclimate has a significant impact on the energy consumption of buildings [7-14].

In the present paper, investigations are conducted in order to evaluate the effect of three strategies listed above; namely the items 9, 10, and 11. The residential building model is assumed to be located in Riyadh city distinguished with extreme Hot-Humid Climatic Region, and the most populated area of Saudi Arabia. The TAS energy simulation software, is used in order to evaluate the impact of such strategies on energy performance of a typical residential building

2. Methodology

The present research utilise the energy modelling simulation named TAS EDSL Software which is developed by Environmental Design Solutions Limited in 1989. It is counted as one of the most common used tool in order to predict building energy performance. The TAS version (9.3.4) is used to predict many variables for indoor building efficiency such as indoor air temperature, relative humidity, heating and cooling load and many others.

A typical residential building in the city of Riyadh, shown in Figure 1, is going to be evaluated to have reduction in the total energy consumption for heating and cooling loads using different strategies for energy saving. The base case of the building is associated with a single external wall without insulation material. The simulation is carried out by the usage of thermal insulation, the usage of shading devices and finally minimising the area of windows to 50%. Table 1 indicates the features of the building envelope used in both cases; the base case and the modified case, of the building as well as the thermal insulation properties.



Fig.1. View of the 3D modelling building with the use of shading devices (A), and the plan of the building (B)

		E	3C building fa	brication and	its features		
	Layers		Width (mm)		Conductivity (W/m ² .°C)		Total U value (W/m².°C)
External wall	Block		200		0.31		1.24
Ground	Concrete		100		0.87		0.99
	Sand dry		1000.0		0.32		
Roof	Concrete		200		0.87		2.5
Glazing	Type of glazing	Width mm	Solar reflectance	Solar absorptio n	Solar transmittanc e	Emissivity	Total U value (W/m ² .°C)
	Single	10.00	0.070	0.115	0.7	0.845	5.53
Thermal Insulation fabrication and its features							
External	Insulation			100		0.04	
wall	Block			200	0.31		
Ground	Concrete Sand dry		100		0.87		0.99
			1	1000.0		0.32	
Roof	Insulation			100		0.04	
	Block			200	0.31		
	C	oncrete		200	0.87		
Glazing	Type of glazing Width mm		n Solar n reflect ance	Solar absorption	Solar transmittance	Emissivit y	Total U value (W/m².°C)
	Insulate d	22 with 10n air gap	nm 0.15	0.133	0.399	0.845	1.80

TABLE I: Building Envelope Features for Building Base Case and Thermal Insulation Properties

Riyadh city has a hot desert climate and over the course of a year, the temperature typically varies from 8°C to 43°C and is rarely below 3°C or above 45°C. The warm season in Riyadh lasts from May 14 to September 26 with an average daily high temperature above 39°C. The hottest day of the year is August 1, with an average high of 43°C and low of 28°C. However, the cold season in Riyadh lasts from November 29 to February 25 with an average daily high temperature below 24°C. The coldest day of the year is January 14, with an average low of 8°C and high of 19°C. The Daily High and Low Temperature over the year can be seen in Figure 2.

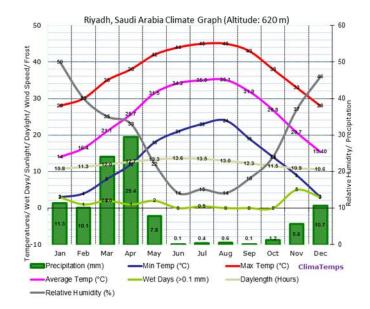


Fig. 2.Climate characteristic of Riyadh, Saudi Arabia

3. Results And Discussion

Figure 3 shows the results of the cooling as well as heating loads for the base case in the different sectors of the plan of the building. It is in prime importance not only to identify ways in order to improve building energy performance, but rather to clearly justify the most effect ones. This will enhance the designers, architects and engineers to execution their requirement and producing more friendly and green buildings which consume less energy. Looking at the results shown in figures 4-6, it can be noted that cooling (CL) and heating loads (HL) have inverse relationship. As heating load rise, cooling load fall.

It can be seen that total energy required for cooling is higher than heating which is attributed to the extreme heat in summer time in the city of Riyadh where temperature could exceed 45°C. Larger spaces performed with higher heating and cooling loads such as 1.3 whereas toilet spaces had the lowest (1.6 and 1.7 zones). One of the most outcomes to consider is that thermal insulation method has the best energy pattern in comparison with all other techniques (base case, shading devices and control of glazing to wall ratio). Although other publications reveal that glazing to wall ratio is the leading element which determine the energy load in many regions [15], it is connected to the amount of glazing compared to the amount of external wall. Glazing to wall ratio might be more crucial when it is becomes lower than 10% or greater than 20% in hot regions.

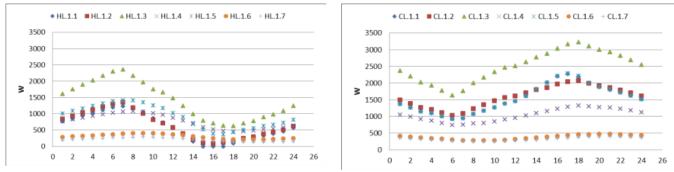
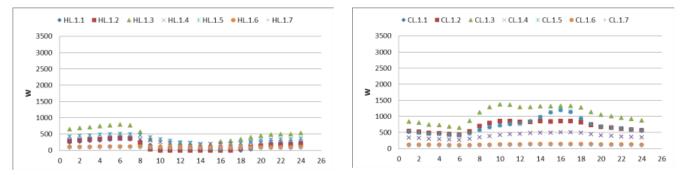
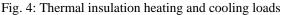
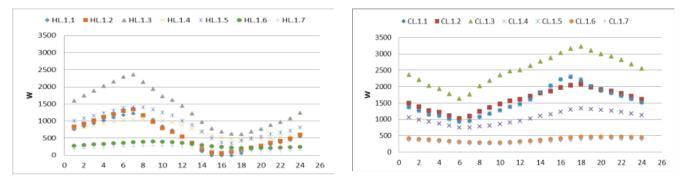





Fig. 3: Base case heating and cooling load

Fig. 5: Shading devices heating and cooling loads

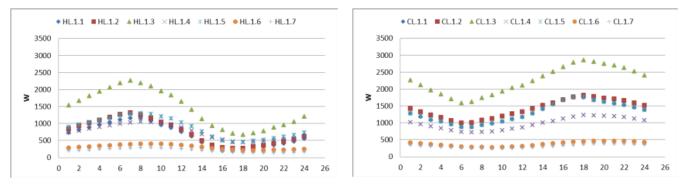


Fig. 6: Minimizing glazing area heating and cooling loads

4. Conclusions

In the present paper, a comprehensive study of the energy consumption for a typical building in the city of Riyadh which is the capital of the Kingdom of Saudi Arabia is carried out. The presented simulations have been conducted using TAS energy simulation software. The investigated city is located within an extreme climate condition which is very hot in summer and very cold in winter. Different strategies for energy saving in buildings have been performed; namely: the usage of thermal insulation, the usage of shading devices and finally minimising the area of windows to 50%. The results of the assessments showed that adding thermal insulation to external walls and adopting an appropriate construction type could improve the energy performance of the building through a reduction of the heating and cooling loads required. The usage of shading devices and the minimising of the area of the windows showed a slightly effect on the reduction of the heating load and a negligible effect of the cooling loads. Consequently, it is recommended to apply the advanced material of thermal insulation in residential buildings of Riyadh city, instead of the traditional insulation materials in order to improve the energy performance of the existing buildings.

5. References

 Hanan M. Taleb ↑, Steve Sharples, Developing sustainable residential buildings in Saudi Arabia: A case study, Applied Energy 88 (2011) 383–391.

https://doi.org/10.1016/j.apenergy.2010.07.029

- [2] Fanger, P.O., Thermal Comfort. Danish Technical Press, Copenhagen, ISBN: 0-07-019915-9, 1970, pp. 21-23.
- [3] Banerjee, R., Importance of Net Zero Energy Building, International Journal of Innovative Research in Advanced Engineering, 2 (5), 2015, 141-145.
- [4] Lawal, A.F. and Ojo, O.J., Assessment of Thermal Performance of Residential Buildings in Ibadan Land, Nigeria, Journal of Emerging Trend in Engineering and Applied Sciences (JETEAS), 29110, 2011, 581-586.
- [5] [1] Hany Abd Elshakour M. Ali, Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani Indicators for measuring performance of building construction companies in Kingdom of Saudi Arabia, Journal of King Saud University – Engineering Sciences (2013) 25, 125–134.
- [6] Hassan Radhi and Steve Sharples, Energy Performance Benchmarking (EPB): A system to measure building energy efficiency, PLEA 2008 – 25th Conference on Passive and Low Energy Architecture, Dublin, 22nd to 24th October 2008.
- [7] Oktay, D., Planning housing environments for sustainability. Evaluations in Cypriot settlements, Istanbul: Yapi Industri Markezi AS., 2001.
- [8] Markus, K. and Morris, E., Buildings, Climate and Energy. London Pitman Publication, 1980.
- [9] Vanwalleghem, T., Meentemeyer, R., Predicting Forest Microclimate in Heterogeneous Landscapes, Ecosystems, 12, 2009, pp. 1158-1172. https://doi.org/10.1007/s10021-009-9281-1
- [10] Dimoudia, A., Kantzioura, A., Zorasa, S., Pallasb, C., Kosmopoulosa, P., Investigation of urban microclimate parameters in an urban center, Energy and Buildings, 64, 2013, 1-9. https://doi.org/10.1016/j.enbuild.2013.04.014
- [11] Nurdan M., Aibek K., Amantur T., Ospanov, Improvement of Parameters of Microclimate of Underground Thermos Greenhouses, International Journal of Applied Engineering Research, Volume 11, Number 11, 2016, 7373-7384
- [12] Kanagaraj, G., and Mahalingam, A., Designing energy efficient commercial buildings—a systems framework. Energy and Buildings, 43(9), 2011, 2329 2343.
 https://doi.org/10.1016/j.enbuild.2011.05.023
- [13] Anna L. P., Gloria P., Veronica L. C., and Franco C., The Impact of Local Microclimate Boundary Conditions on Building Energy Performance, Sustainability 7, 2015, 9207-9230 https://doi.org/10.1016/j.enbuild.2011.05.023
- [14] Nazhatulzalkis J., Nurul I. M., Mohd F. K., Suriani N. A. W., Thermal Comfort of Residential Building in Malaysia at Different Micro-Climates, Procedia - Social and Behavioral Sciences 170, 2015, 613 – 623.

https://doi.org/10.1016/j.sbspro.2015.01.063

[15] Alwetaishi, M. Impact of glazing to wall ratio in various climatic regions: A case study, Journal of King Saudi University- Engineering Science (2017) In press.